
Matrix factorization for the Netflix Prize

May 10, 2012

Abstract

I compare two common techniques to compute matrix factorizations for recommender systems,
specifically using the Netflix prize data set. Accuracy, run-time, and scalability are discussed for
stochastic gradient descent and non-linear conjugate gradient.

1 Intro

A ton of research has come out on collaborative filtering for recommender systems since Netflix an-
nounced their million dollar prize in 2006. A quick summary of the contest: given a bunch of 1-5
ratings of movies by users, predict what those users would rate movies for which you don’t have the
ratings. The goal is to minimize the root mean square error (RMSE). Some of the most successful
techniques have been based on matrix factorization methods. The ratings in the recommender system
can be imagined as a gigantic nmxnu matrix with missing entries, where nm and nu are the number of
movies and users. These methods attempt to approximate this matrix, including the missing entries,
by the product of two much smaller matrices, Q ∈ Rnfxnm and P ∈ Rnfxnu , where nf is the number
of “features”, or latent factors[KBV09].

There is a huge literature on methods for finding these two matrices. I’m going to look at two of these
techniques and compare the accuracy and runtime, and examine their scalability. Everything was done
in C++.

Who cares about RMSE

In class it was pointed out that the vast majority of improvement in RMSE came from fairly simple
methods, with the last tiny bit needed to win the prize coming from a nasty combination of a bunch
of complicated-looking stuff. The suggestion was that this complicated stuff was probably only worth
it to win the prize, and perhaps as an intellectual exercise.

As a small defense for that tiny improvement, I’ll mention this. In [K08], the eventual winners of
the Netflix prize consider the related problem of coming up with the best K recommended films for
a particular user. In their model of this problem, even modest decreases in RMSE for the original
problem substantially improve the quality of the top K recommendations. If they are to believed,
improving RMSE leads to better recommendations, which is after all the point of all this. Of course
they’re probably a little biased on the matter.

1



2 Set up

2.1 Notation

I’ll use the notation from [K08].

• rui - actual rating of user u of movie i

• r̂ui - predicted rating of user u of movie i

• K - the set of pairs (u, i) for which rui is known

• λ - regularization parameter to prevent over fitting

2.2 Data files, representation, training and test sets

The dataset for the Netflix prize is presented in nm = 17770 csv files, one for each movie. Each line
is a record of the form <user_id>,<rating>,<date>. I ignore the date information; the pros were
only able to get very modest improvement from using it. Even without dates, it is an annoyingly large
amount of data, and just parsing it takes a long time. So as a first step, I went through all the files and
created and saved an array of length nr ≈ 108 with an entry for each rating. These entries are structs
containing the movie id (short int, 2B), the user id (int, 4B), and the rating (unsigned char, 1B),
and so this array takes up 700MB. The array can be loaded from disk into memory almost instantly,
making it much more convenient than parsing all the files for each run.

Netflix included a list of ≈ 106 ratings called the “probe set” which was designed to closely resemble
their secret test set used for judging submissions. This list of ratings is included in the given training
data, so it was necessary to pass through the training data and separate out all the probe ratings. I
then split these probe ratings into two equal size sets, one for cross-validation (CV set) and another
for reporting final performance (test set).

One annoying detail: the user IDs are not conveniently numbered from 0 to nu but instead skip all
over the place into the millions. It was necessary to map these down to [0,nu] to use as array indices.

2.3 Baseline predictors

For both algorithms, I first obtained a set of baseline predictors: µ, bu, and bm, the overall average,
individual user average, and individual movie average. The final prediction for a rating is r̂ui =
µ+bi+bu+qTi pu. To find the baseline predictors, I ignored the final term and minimized the following
loss function: ∑

(u,i)∈K

(rui − µ− bi − bu)
2 + λ(

∑

u

b2u +
∑

i

b2i )

I solved this once in advance using nonlinear conjugate gradient, cross-validating against the CV set to
find the best choice of λ. Using only these baseline predictors, and ignoring any user-movie interaction,
gave an RMSE of 1.02 on the test set. This isn’t much better than the RMSE of 1.05 from using µ
alone. I learned these separately from the matrix factorization, though perhaps it would be better
to learn all the predictors simulataneously. I intend to investigate this in the future, in addition to
determining what impact the baseline predictors have on the runtime and accuracy of the algorithms
below.

2



3 The algorithms

3.1 Stochastic gradient descent

This method repeatedly passes through the training examples, and does a simple update of the pre-
dictors after each example. It is easy to implement and can give good results quickly, but has some
drawbacks, two of which are:

1. there is no natural step-size for the update, and so this has to be tuned

2. it’s not that easy to scale to many machines

There are ways to automatically tune the step-size, but this starts to complicate what is normally a
very simple method. I found a reasonable starting step-size through trial and error, and then had
this decay by a factor of .98 after each full pass through the data. This seemed to work well enough,
though I didn’t investigate very thoroughly.

I’ve read some papers on parallelizing SGD which looked promising[HOGWILD, Jellyfish]. One simple
idea that I intend to evaluate is splitting the data into subsets, one for each core, and running SGD
independently on these subsets, averaging the solutions together every so often. I believe this is part of
the approach John Langford mentioned when discussing how to scale Vowpal Wabbit. I had actually
seen the approach in [Jellyfish] back in 2009 on the the Netflix Prize forums[post]:

- Parallelization. I reasoned that, if I wanted to run on n processors, I could divide the user
into n groups and the movies into n groups, so that the user x movie matrix would look
like an n x n grid. At any one time, you work on n different squares in that grid, chosen
so that no two squares are in the same row or column; it takes n steps with n processors
to process the entire set once. For instance: movie_block = thread number; user_block =
(step + thread) % n.

3.2 Nonlinear conjugate gradient

This is an algorithm that relies only on gradient information, and so can be used anywhere you might
consider using vanilla gradient descent. It’s included in a lot of optimization libraries so there should
be no need to hand code it; I used a library called ALGLIB[ALGLIB]. A line search is performed, so
there is no need to tune a step-size. And for this problem, computing the gradient is an embarassingly
parallel task; I used openMP which automatically parallelizes for loops with a single line of code,
though there was also a small amount of bookkeeping involved.

The ALGLIB explanation of the algorithm is pretty clear:

...the direction to explore is chosen as a linear combination of the current gradient vector
and previous search direction:

xk+1 = xk + αkdk

dk+1 = −gk+1 + βkdk

α is chosen by minimization of f(xk + αkdk). There are several formulas to calculate β,
each of them corresponding to a distinct algorithm from the CG family. This approach,
despite its simplicity, allows the accumulation of information about the function curvature
- this information is stored in the current search direction.

John Langford said that Vowpal Wabbit initially used CG before switching to L-BFGS, which they
found to be superior. In [LNCLPN] the two algorithms as well as SGD are compared on a number of
problems and they found that (not surprisingly) it depends on the problem, but that CG tends to be
better for high dimensional (>104 features) problems.

3



1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

number of cores

sp
ee

du
p

Figure 1: Speedup for function/gradient evaluation for CG

4 Experiments: how many cores does it take for parallel CG to

beat serial SGD?

Desktop computers now typically come equipped with multicore CPUs, 4 being fairly common. Today
you can get a Mac Pro with 12 cores. Though SGD is simple and works well, it might not be worth
sacrificing all those extra cores. Using an off the shelf optimization algorithm, like CG or L-BFGS,
could be a better choice if it’s really easy to parallelize, like in this case. The machine I ran these
experiments on has two Intel Xeon X5570 processors, for a total of 8 cores.

I used nf = 32 features and stopped each algorithm when the training error failed to improve by more
than 10−4 between iterations. This was large enough that overfitting had not yet set in; see below for
more on this. Through trial and error I found regularization parameters λ for each algorithm: .02 for
SGD and .035 for CG worked well. I have some code to automatically find the optimal λ’s1, but it’s
not very robust so I didn’t use it here.

The results for CG with varying number of cores were a bit weird. First, the speedup was significantly
less than linear (fig 1), surprisingly so. I think I have a couple dumb overhead things in there that
I could try to work around. Second, the answer changed based on the number of cores. This is a
bit troubling.The P and Q matrices are initialized randomly, but I fixed the seed. I think the way I
combine the gradients is a little broken. Anyway, the results are in the same ballpark.

Answer: 3.5 cores

See figure 2.

1Using a derivative-free 1D optimization algorithm, same as MATLAB’s fminbnd

4



algorithm time (s) train error cv error test error

CG, 3 cores 3077 .772566 .924827 .926236
SGD, 1 core 2614 .751035 .927448 .929660
CG, 4 cores 2454 .772383 .924557 .925959
CG, 8 cores 1052 .789230 .930403 .931022

Figure 2: Algorithm performances with 32 features. Each algorithm terminated once training error
failed to improve by 10−4 between iterations. I used λ = .02 for SGD and λ = .035 for CG as
regularization parameters.

5 Some observations

5.1 BLAS

Since we’re doing a lot of dot products, it makes sense to use an optimized linear algebra library. Macs
have a good one, but on Linux I found Intel’s MKL to be much faster than ATLAS, the default free
option. My free license expired before I thought to take some benchmarks. The dot products qTi pu are
between vectors of length nf , so I looked at the run time per epoch (of SGD) with different numbers
of features. It looks like just cycling through the data takes a while, suggesting that a better data
representation could be worthwhile.

nf epoch time (s)
2 9
4 11
8 13
16 18
32 25
64 42

5.2 Data representation

(this is speculative but I felt like writing it down, please skip)

The representation I used was a huge array of (movie,user,rating) triples. This used around 700MB
and required reading three items for each record. An obvious more compact representation would be
an array of length nu ≈5e5, with a list of (movie, rating) records for each user. This would use around
300MB and only require reading two items per record.

An even more compact representation again uses an array of length nu, where each element contains:

1. an array of 5 short ints (maybe unsigned char is enough) of the counts for each rating

2. an array of the movies (also short ints) rated by that user, sorted by rating

The first thing is only 2 · 5 · 5e5 = 5MB (plus I guess the pointer to the array, another 4MB). The
second thing takes up all the memory, its a short int per rating: 2 · 108 = 200MB.

These other representations can be harder to use, but it’s still easy to scan through the data. And
for this problem, that’s all we really need to do. I implemented the 200MB version a while ago but
deleted it after deciding it was too hard to sample. I wish I hadn’t done that because I recall it was a
good amount faster.

5



5.3 Overfitting

When using a more stringent stopping criterion than I did, both algorithms monotonically improve the
training error on each iteration, but reach a minimum on cross-validation error after which continued
iterations increased it. Unfortunately the cross-validation error did not appear to decrease monotoni-
cally to its minimum before increasing; it bounced around a little, so it seemed a bad idea to use this
as a stopping criterion. However, this is exactly what they did in[TJB09] to achieve an RMSE of .9054
using (I think) the same model as I did with 50 features.

Some ideas on how I might fix this:

• Cross-validate on the whole probe set instead of only half, i.e. get rid of the test set. Less honest,
but this is what people seemed to do in the literature.

• Use some sort of moving average of the decrease in cross-validation error as the stopping criterion.

• The bumpiness was only within the first twenty iterations or so, as far as I noticed. I could
enforce a minimum number of iterations.

5.4 Poor accuracy

The best RMSE on the probe set I was able to achieve with 50 features was .914, well short of the
.9054 in [TJB09]. I’m sure I could do a little better with a better λ, though I doubt I could get all the
way there with just that. I wonder what else explains the difference.

6 Conclusion

This is hard. Fiddling with parameters and developing in C++ is not fun. But it was interesting to
compare the two algorithms and see at what point the extra cores become worthwhile: 3.5.

References

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[K08] Yehuda Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering
model. 2008

[ALGLIB] http://www.alglib.net/

[LNCLPN] Quoc V. Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew
Y. Ng. On optimization methods for deep learning. In ICML, 2011.

[TJB09] A Toscher, M Jahrer, and RM Bell. The bigchaos solution to the netflix grand prize. 2009

[HOGWILD] F Niu, B Recht, C Re, and S Wright. Hogwild!: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent. 2011

[Jellyfish] B Recht and C Re. Parallel Stochastic Gradient Algorithms for Large-Scale Matrix Com-
pletion. 2011

[post] http://www.netflixprize.com/community/viewtopic.php?id=1498

6


