
Optimal Power Grid Attack

Sean Harnett

May 11, 2011

Abstract

I study a continous formulation of the following problem: given a power grid, �nd a small

set of lines whose failure will cause maximum damage. Instead of removing lines from the grid, I

consider increasing their impedance continuously, and attempt to maximize the resulting disruption

to stable voltages. For all test cases, I show that a fast and simple �rst-order optimization method

�nds the same set of lines as more sophisticated techniques.

1 Introduction

In the study of power grid vulnerabilities, the so-called �N - k� problem asks: is there a set of k power
lines whose simultaneous outage will result in system failure? Of primary interest are small values of
k; for large k (greater than 5 or so) the answer is �yes�, and for k = 1 simple enumeration will work
[1].

For large grids, the combinatorial explosion makes the discrete problem intractable. One way to bypass
this complexity is to consider a related continuous problem: instead of looking at power line failures,
let the impedances of the lines be modi�ed. To simulate the idea of a small k, impose constraints
on how much the impedances can be changed. The hope is that this modi�ed problem will have a
combinatorial solution � the optimal attack will be to greatly modify the impedance of only a small
number of lines, while perhaps slightly modifying many more lines. Later we'll see that this is indeed
the case.

Power grids can fail in a number of ways. One is voltage instability, where the bus voltages stray
beyond certain limits. The usual way for this to occur is "voltage collapse" � voltages progressively

Figure 1: The power transmission network. It can be thought of as a graph, with generators and
distribution substations as the vertices (called buses) and the transmission lines as edges.

1

decline due to an imbalance of reactive power supply and demand, eventually leading to blackout. It
is also bad for voltages to be too high, though this is less common in practice.

The optimization problem is as follows: �nd the set of changes in transmission line impedances, subject
to constraints, that maximizes voltage instability. The objective, voltage instability, is a non-convex
black box which requires solving the non-linear power �ow equations at each evaluation. In particular,
this creates di�culties for �nding derivatives.

2 The AC Power Flow Model

I present a short summary of the derivation of the power �ow equations [2]. To �nd the bus voltages
(and hence compute the voltage disruption), the AC power �ow model is used. The quantities of
interest in the model at each bus i are as follows:

• known - transmission line parameters (impedance, capacitance, etc)

• known - complex power demands Si = Pi + jQi (real + reactive) at each demand bus

• unknown - complex voltage Vi = |Vi|ejθi at each demand bus

• known - real power supply Pi and voltage magnitude |Vi| at each generator bus

• unknown - reactive power Qi and voltage angle θi at each generator bus

We obtain the unknowns by accounting for the total current and power at each node. Speci�cally, the
current injected into the system at bus i is the di�erence between the current generated and current
demanded (Kircho�'s law):

Ii = IGi
− IDi

=

n∑
k=1

YikVk

where n is the number of buses and Y is the admittance matrix, whose diagonal terms Yii are the
sums of the admittances of all connections to bus i and o�-diagonal terms Yik are the opposite of the
admittance between buses i and k. The admittance matrix captures the physical parameters of the
transmission lines. 1

Similarly, we have for the power injected into the system at bus i (conservation of complex power):

Si = SGi
− SDi

= ViI
∗
i = Vi

n∑
k=1

Y ∗ikV
∗
k

The real and imaginary parts of this equation must match, so for each demand bus (where Si is entirely
known and we need to �nd Vi) we have two quadratic equations. For each generator bus, we need only
match the real part, Pi = Re [Vi

∑n
k=1 Y

∗
ikV
∗
k] by �nding the right θi's (the |Vi|'s are known). We can

then compute the unknown Qi if desired.

Assume the �rst bus is a generator, let θ1 = 0 and measure all other angles relative to this bus, called
the slack bus. We thus ignore this equation and are left with a system of n+m−1 quadratic equations
and unknowns, where m is the number of demand buses.

In general this system will not have a unique solution. Under normal practical conditions, however,
there is exactly one realistic solution. It is the solution where all the |Vi| are large and approximately

1Admittance is the inverse of impedance: Y = Z−1 = (R+ jX)−1, where R is resistance and X is reactance.

2

equal (the problem is usually scaled so that |V1| = 1), and the θi all small. Thus the problem is usually
amenable to solution by Newton's method, with initial guess |Vi| = 1 and θi = 0 for all i.

In summary, to �nd the voltages Vi for each bus, we apply Newton's method to the equations(
Vi

n∑
k=1

Y ∗ikV
∗
k

)
− Si = 0, for each bus i (1)

The software library MATPOWER [3] includes a number of MATLAB scripts to solve power �ow
problems. I used it extensively in this project.

3 Formulation of the Optimization Problem

We want to maximize �voltage instability�. As mentioned above, the system is stable when all (scaled)
voltages are approximately equal to one in magnitude. This suggests the following objective function:

f(x) =

n∑
i=1

(1− |Vi|)2

Here x denotes the vector of impedance multipliers on the transmission lines. Note that the objective
is not an explicit function of x; changes in x a�ect the admittance matrix Y , which in turn a�ects the
solution to the power �ow equations (1), whose solutions Vi �nally directly change the objective f .

To capture the idea of only removing a small number of lines, impose the following conditions on x:

1 ≤ xi ≤ α for each line i (2)
#lines∑
i=1

(xi − 1) ≤ β

In words, the impedance for each line can be multiplied up to some maximum amount α, and the
total amount of multiplication across all lines is at most β. By varing these two parameters, one can
attempt to simulate di�erent values of k in the N −k problem. Thus we have a non-linear, non-convex
maximization problem with linear constraints:

max
x

f(x)

subject to Ax ≤ b

4 Solving the Optimization Problem

My �rst attempt at a solution to the optimization problem is via the reduced gradient method, aka
Frank-Wolfe algorithm. It is a simple way to accomodate constraints while using steepest ascent.
Essentially, instead of taking a step in the direction of the gradient ∇f(xk), which might lead to a
constraint violation, we take a step towards the point yk on the constraint boundary which maximizes
the inner product with the gradient. In other words, we maximize the �rst-order Taylor expansion
about the current point:

max
y∈S

f(xk) +∇f(xk)T (y − xk) (3)

where S is the feasible region. This is a linear program which produces the extreme point yk. De�ne
the search direction pk = yk − xk and do a line search to �nd the next iterate: xk+1 = xk + αpk.

3

4.1 Estimating ∇f

Since explicit derivatives of f are unavailable, I approximate it via �nite di�erences. For large grids,
this estimation of the gradient is by far the most costly part of the optimization process, which suggests
the use of a �true� derivate free method, such as Nelder-Mead.

I looked into this brie�y, using a simple extension of MATLABs fminsearch called fminsearchbnd,
available in the �le exchange of the Mathworks website. It implements fminsearch (Nelder-Mead)
with simple bound constraints by internally transforming the variables. I ignored the sum constraint
temporarily. I found that this method was far, far slower (something like 100 times) than estimating
the gradient, and stopped there. Perhaps a better implementation, or a di�erent DFO algorithm
altogether would produce better results.

The �nite di�erence estimation of ∇f is fairly straightforward; I used forward di�erences and the
SAS/OR User's Guide for guidance [4].

(∇f(x))i ≈
f(x+ hei)− f(x)

h

I used one trick to speed things up. When solving the non-linear system (1) to evaluate f , instead
of performing pure Newton's method for each component of the gradient, I �nd the LU factors of the
Jacobian only once, at f(x). Then to �nd f(x+ hei), I simply solve with the same factors repeatedly.
This typically requires an additional iteration or two for Newton to converge for each i, but ultimately
speeds things up by about an order of magnitude, as the LU factorization is very expensive. This is a
signi�cant savings; for my largest test case of 15029 buses, even this improved gradient approximation
takes over ten minutes on an Intel i7 machine.

4.2 Solving the LP

MATLAB's linear program solver linprog, included in the optimization toolkit, was perfectly well
suited for this problem. As an example, for the 15029-bus case, it solves the linear program (3) for
each iteration in about 1.2 seconds. Out of curiosity, I installed the commercial solver Gurobi [5] with
an academic license. Gurobi is state-of-the-art software which also solves mixed-integer and quadratic
optimization problems. It solved the same problem as before in ~.035 seconds, and so I continued to
use it moving forward.

4.3 The line search: maximize f(x+ αp)

I �rst considered a simple backtracking line search to satisfy the Armijo condition. To improve upon
this, I considered adding some sort of Wolfe condition, to get closer to a minimizer of f(xk + αpk).
Since computing ∇f is so expensive, this was a bad idea. Next I simply evaluated f(xk+αpk) on a grid
of 25 evenly spaced points with α ∈ [0, 1], and picked out the maximum. I eventually realized there
must be a better way: I settled on MATLAB's fminbnd for minimizing single-variable functions on a
�xed interval. According to the doc �le, it uses a golden section search and parabolic interpolation.
This consistently �nds the minimum to a tolerance of 1e-4 with fewer than 20 function evaluations,
better than my grid method.

4.4 Advanced software: IPOPT

To contrast with the simple Frank-Wolfe algorithm, I also solved the problem with the modern, open-
source software library IPOPT [6]. It uses a primal-dual interior-point method as described in the

4

�nal lecture, with an adaptive strategy for updating the barrier parameter and a �lter line search
method. From what I understand, interior-point methods are typically preferred over SQP for large-
scale problems, as the latter can su�er from combinatorial complexity associated with determining the
active set. So this seemed like a good choice for my problem.

IPOPT requires ∇f , so I had it use my �nite di�erence approximation. It uses Hessian information
if available. If not, as in my case, IPOPT does a limited-memory BFGS update to approximate the
Hessian.

MATLAB's optimization toolbox also includes solvers for constrained non-linear problems, including
SQP and interior-point algorithms. I looked into these brie�y, getting poor results.

5 Numerical Results

MATPOWER includes a large number of test cases of various sizes, from a toy example of 9 buses
up to actual Polish data with 4736 buses. I also have access to some old data for the U.S./Canada
Eastern interconnection, with 15029 buses.

An example which is typical of all the small (≤ 300 buses) cases is the 1961 W IEEE 57 Bus Test
Case. With constraints (2) set with the maximum line multiplier α = 3 and the total multiplication to
β = 6, both algorithms place the entire budget on three lines. Here are the results for the Frank-Wolfe
algorithm:

iteration objective step size 43 46 50 15 25 42

0 0 - 1 1 1 1 1 1
1 .14687 1 1 3 3 1 3 1
2 .16041 .249 1.50 2.50 2.50 1.50 2.50 1.50
3 .20666 1 3 3 3 1 1 1
4 .20666 1 3 3 3 1 1 1

Figure 2: Results for Frank-Wolfe algorithm on 57 bus case with α = 3, β = 6.

I've at each iteration subtracted o� the objective of the initial, unperturbed system, to report only
the change in voltage disruption caused by the attack. The numbers at the top are the lines being
attacked. The algorithm terminated in .84 seconds. The fourth row is due to a tiny improvement in
the last iteration that is beyond the precision shown in the table.

IPOPT produced the exact same attack in 147 iterations and 11.8 seconds. These trends were true for
all the small cases, namely:

• Frank-Wolfe and IPOPT produce the same attack, focused entirely on a small set of lines

• IPOPT takes 5-10 times as long to terminate

For the larger cases, the attack is sometimes less concentrated. As an example, the attack against
the 2746 bus Polish winter 2003-2004 case, with α = 5 and β = 12 is distributed over about 20 lines.
However, the objective for this case is much smaller, so small in fact that we can likely conclude that
the case is safe against this sort of attack. Frank-Wolfe achieved an objective of .012496 in 134 seconds,
while IPOPT got .0125193 in 379 seconds. In this case, IPOPT was only about three times slower,
though again it picks out essentially the exact same lines. See �gure 3.

5

Figure 3: Polish winter 2003-2004 case, 2746 buses, α = 5 and β = 12. Frank-Wolfe and IPOPT pick
essentially the same attack.

6

LINE MULTIPLIER

22039 2.2134

22037 2.1495

22046 1.8873

22047 1.8564

21667 1.7675

22348 1.6733

23091 1.6014

23090 1.597

22922 1.4845

21607 1.4153

23452 1.4091

23451 1.4091

21836 1.4064

21833 1.4034

21606 1.3222

23371 1.2661

23368 1.2652

22350 1.2622

21919 1.2483

21920 1.2436

21893 1.18

21888 1.1728

22349 1.1481

23396 1.1402

23397 1.1395

22719 1.1317

21887 1.0911

21892 1.0909

22757 1.0165

22756 1.0084

Figure 4: Eastern interconnect estimated summer 2003, 15029 buses, α = 5 and β = 12. IPOPT
achieves an objective of .217 in ten hours and �ve minutes.

As a �nal example, consider the 15029-bus Eastern interconnection case. Unfortunately, I failed to run
this with IPOPT and Frank-Wolfe with the same parameters in time for the deadline. Frank-Wolfe
takes around an hour and a half to terminate, while IPOPT takes around ten hours. In �gure 4, I
present the attack computed by IPOPT with α = 5 and β = 12. As I email this in, Frank-Wolfe has
completed three iterations in 35 minutes, objective is .188, and it has distributed the attack over the
same lines as IPOPT as seen in the �gure.

In all cases, IPOPT and Frank-Wolfe distribute the attack over the same set of lines. IPOPT sometimes
achieves a slightly higher objective, but at a signi�cant cost in time. As the true purpose of my problem
is to determine which lines are the most vulnerable, the slighly higher objective is not worth the cost.

6 Conclusion

I've reformulated the N − k problem into a continuous form amenable to continous optimization
methods. I used a simple �rst-order method to solve the optimization problem, which produces a

7

combinatorial solution as hoped; the solution to the continuous problem is to focus the attack onto a
small number of lines. This captures the spirit of a small k in the original N − k problem. I compare
the simple optimization method to a more sophisticated one, and observe that they produce the same
results.

References

[1] D. Bienstock and A. Verma. The N − k Problem in Power Grids: New Models, Formulations, and
Numerical Experiments. SIAM J. Optim., 20, 2352-2380, 2010.

[2] A. Bergen and V. Vittal. Power Systems Analysis. Prentice Hall, Upper Saddle River, New Jersey,
2000.

[3] http://www.pserc.cornell.edu/matpower/

[4] SAS/OR User's Guide: Mathematical Programming. Retrieved May 11, 2011, from
http://www.otago.ac.nz/sas/ormp/chap5/sect28.htm

[5] http://www.gurobi.com/

[6] https://projects.coin-or.org/Ipopt

8

